
LA-UR-21-27508
Approved for public release; distribution is unlimited.

Title: Computing Angular Distributions from Simulation Data

Author(s): Woods, Charles Nathan

Intended for: Report

Issued: 2021-07-29

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Computing Angular Distributions from
Simulation Data
C. Nathan Woods, XCP-8

Introduction
Overview
The essential idea of this algorithm is to compute the angular distribution of a vector quantity, then
create an informative image. In our example, we will compute the angular distribution of linear
momentum from an xRage simulation of an exploding shaped charge. We will then explore one possible
method for adding information to the resulting image.

Computing Polar Angle
The first thing to consider is how to properly define and compute the polar angle. In our case, we have a
two dimensional simulation with an axis of symmetry oriented along the x-axis. We will measure the
polar angle from the positive x-axis. Paraview does not offer an arctangent function that gives correct
quadrants, so we will define one using a Programmable Filter, as shown in Programmable Filter 1.

Programmable Filter 1 - Code for computing the polar angle based on (x,y) components, as measured from the positive x-axis.

p = inputs[0].CellData['cell_momentum']

def atan2(y,x):
 sgnx = sign(x)
 sgny = sign(y)
 # This fails when x = 0, b/c arctan(y/x) = NaN, and 0*NaN = NaN.
 # Make sure you've gotten rid of those using Threshold or similar.
 out = sgnx**2*arctan(y/x)+.5*(1-sgnx)*(1+sgny-sgny**2)*pi
 return out

output.CellData.append(atan2(p[:,1], p[:,0]), 'theta')

Figure 1 - Axisymmetric slice of exploding shaped charge, showing the different materials involved. The exploded primer charge
is on the left, the shock wave separating the reactants and products in the main charge is located in the center. The thin layer of
metal can be seen forming a jet toward the right, and the thick metal casing surrounds the charge on the top. The axis of
symmetry is at the bottom.

As noted in the code, the arctan formula will fail for inputs with no momentum in the x-direction. This is
most easily managed by first using a Paraview Threshold filter to remove all data with x-momentum
smaller than some epsilon value.

Computing Angular Distribution of Momentum
Mathematically, we wish to compute the distribution of momentum in the simulation as a function of
polar angle. This is most conveniently done mathematically by expressing momentum in polar
coordinates (𝑝𝑝,𝜃𝜃) and integrating over the magnitude 𝑝𝑝. Unfortunately, in our case we do not have
access to a continuous field representation of momentum, so we must modify our algorithm slightly.

Suppose that we have a field 𝜙𝜙:𝑀𝑀 → ℝ𝑛𝑛 and we wish to integrate it over some surface 𝑆𝑆 ⊂ 𝑀𝑀 (such as a
cone of constant polar angle). The field 𝜙𝜙 is represented as a set of scalar or vector values at discrete
points (denoted by 𝜙𝜙𝑖𝑖) which do not necessarily coincide with the surface 𝑆𝑆. Using continuous functions
and variables, we would compute the integral of 𝜙𝜙 over 𝑆𝑆 directly:

Φ = ∬ 𝜙𝜙 𝑑𝑑𝑑𝑑𝑆𝑆 .

Since we do not assume that we have a set of discrete facets that aligns with the grid, we must find
some way to approximate this integral. We do not choose to interpolate grid values onto the aligned
surface. Instead, we will perform a weighted integration, with the weight function chosen to include
only those values that ought to affect the average. In choosing our weight function, we want something
that varies smoothly across its extent while ignoring points that are far from the averaging surface. One
example is the bump function:

Ψ(𝑥𝑥) = �exp �
1

(𝑥𝑥2 − 1)� ; 𝑥𝑥 ∈ (−1, 1)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

In our case, we want to be able to control the width of our bump, which yields:

Figure 2 - The polar angle of the momentum vector as a function of space. Note the reddish areas which are moving radially
inward (up), while the blue of moving radially out (down). Areas with zero momentum (such as the unreacted main charge) are
not shown.

Ψ(𝑥𝑥,ℎ) = �exp�
ℎ2

(𝑥𝑥2 − ℎ2)� ; 𝑥𝑥 ∈ (−ℎ,ℎ)

0 ; 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

We will need to normalize this function for a given value of ℎ:

Ψ′(𝑥𝑥,ℎ) ≡
Ψ(𝑥𝑥,ℎ)

∫ Ψ(𝑥𝑥,ℎ)𝑑𝑑𝑑𝑑ℎ
−ℎ

≅
Ψ(𝑥𝑥,ℎ)

0.443994 ℎ

It is straightforward to show:

lim
ℎ→0

� Ψ′(𝑥𝑥, ℎ)𝜙𝜙�𝑉𝑉(𝑥𝑥)�𝑑𝑑𝑑𝑑 = � 𝜙𝜙(𝑆𝑆)𝑑𝑑𝑑𝑑
𝑆𝑆𝑉𝑉

From this, we may define:

� 𝜙𝜙 𝑑𝑑𝑑𝑑
𝑆𝑆

≈� Ψ(𝑥𝑥𝑖𝑖,ℎ) 𝜙𝜙𝑖𝑖 𝑉𝑉𝑖𝑖
𝑖𝑖

Evaluating the surface integral in this way is mathematically equivalent to performing a smoothing
convolution using the bump filter. The parameter ℎ effectively controls the degree of the smoothing. A
Programmable Filter for this is shown in Programmable Filter 2.

Figure 3 - Physical-space representation of the total momentum associated with a given polar angle in phase space.

Computing Maximum Momentum for a Given Polar Angle
It is useful to compute the maximum momentum at a given polar angle, particularly for scaling
purposes. We will apply the same smoothing operation as before, with a different normalization.

The intent of this normalization is to preserve the actual maximum value where appropriate, while
smoothing the effects of the discretization. To this end, we will simply normalize the bump function
Ψ(𝑥𝑥,ℎ) by its peak value, Ψ(0,ℎ). This yields:

Ψ′(𝑥𝑥.ℎ) ≡ 𝑒𝑒 Ψ(𝑥𝑥,ℎ)

Profiling has shown that the bulk of the computation time in these smoothing operations lies in the
computation of Ψ(𝑥𝑥,ℎ), so we take advantage of the work already done in computing the angular
distribution by computing the maximum pressure at the same time, as shown in Programmable Filter 2

Representing the Angular Distribution as a Curve in Paraview
As computed above, both the integrated_momentum and max_momentum fields are cell-centered
fields across the whole discrete mesh, representing the integrated and maximum momentum along the
cone of constant polar angle in phase space, corresponding to the phase space angle of the momentum
of the given cell. This is very confusing, and it is also not typically what we want. A better representation
of the angular distribution of momentum would be a simple polar graph.

A simple polar graph can be created by using the integrated momentum as the radial distance from the
origin and the phase space polar angle. A Programmable Filter to do this is shown in Programmable
Filter 3. The resulting plot is shown in Figure 5.

Figure 4 - Physical-space representation of the maximum momentum associated with a given phase-space polar angle.

Programmable Filter 2 - Code for computing the angular distribution of a vector quantity, as well as a smoothed maximum
value. The smoothing function is applied to the polar angle directly.

Programmable Filter 3 - Code for creating a polar plot representation of the angular momentum distribution. The Output Data
Set Type field must be set to vtkPolyData.

p = inputs[0].CellData['cell_momentum']
q = inputs[0].CellData['theta']
compute the magnitude of the momentum:
p = sqrt((p*p).sum(axis=1))
h = pi/32
h2 = h**2
sortargs = argsort(q)
unsortargs = argsort(sortargs)
q = q[sortargs]
p = p[sortargs]
P = 0*p
p_max = 0*p
for ind in range(len(q)):
 q0 = q[ind]
 min_ind, max_ind = searchsorted(q, (q0-h, q0+h))
 x2 = (q[min_ind:max_ind] - q0)**2
 Psi = exp(h2/(x2-h2))
 temp = Psi*p[min_ind:max_ind]
 P[ind] = sum(temp/(h*.443994))
 p_max[ind] = max(temp*2.71828)
output.CellData.append(P[unsortargs], 'integrated_momentum')
output.CellData.append(p_max[unsortargs], 'max_momentum')

P = inputs[0].CellData['integrated_momentum']
q = inputs[0].CellData['theta']
sortargs = argsort(q)
y = P*cos(q)
x = P*sin(q)
z = 0*P
x, y, z = (coord[sortargs] for coord in (x,y,z))
numPts = len(q)
pdo = self.GetPolyDataOutput()
newPts = vtk.vtkPoints()
for ind in range(0, numPts):
 newPts.InsertPoint(ind, x[ind], y[ind], z[ind])
pdo.SetPoints(newPts)
aPolyLine = vtk.vtkPolyLine()
aPolyLine.GetPointIds().SetNumberOfIds(numPts)
for ind in range(0, numPts):
 aPolyLine.GetPointIds().SetId(ind, ind)
pdo.Allocate(1, 1)
pdo.InsertNextCell(aPolyLine.GetCellType(), aPolyLine.GetPointIds())

Figure 5 - Polar plot of angular momentum distribution for the shaped charge simulation.

Filling in the Angular Distribution
It is often desirable to add additional information to a given visualization. In this case, the most obvious
way to do is by using Paraview’s capabilities to fill in the curve we have drawn with a representation of
the data on the original grid. This provides several challenges.

First, the curve we have drawn is rendered with respect to the phase space of the simulation. In other
words, the x- and y- coordinates of the curve represent momentum values, not position. Paraview
allows the user to convert a data set to an alternate coordinate representation using the Coordinate
Values option in the Calculator filter. The question becomes, “What is the appropriate coordinate
transformation?” One choice is to scale the cell momentum:

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≡ 𝑝𝑝
𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Having done this, it is possible to convert the rest of the grid values to the scaled momentum
coordinates. It is then possible to plot a scalar field, such as the magnitude of the individual cell
momentum, as shown in Figure 6.

Further Thoughts and Considerations
Visual Distortion Due to Spherical Coordinates
One problem with this analysis is that the volume over which momentum is integrated is smaller near
the poles than it is near the equator. It is possible to modify the Programmable Filter code to integrate
over something like 𝑎𝑎 ≡ cos𝜃𝜃 in order to address this. However, care must be taken to ensure that the
integration is done correctly, and this will result in an artificially symmetric result for 180∘ < 𝜃𝜃 < 360∘.
That may not matter for simulations that have run to late time, where momentum toward the axis of
symmetry may be neglected.

How to Color the Fill Points
Coloring the fill points by cell momentum is simple, but it can also be misleading. The xRage quantity
cell_momentum is extrinsic, which means that it will scale both with radial distance and with grid
size. The dark red points in Figure 6, for instance, are simply representations of grid points that have
been de-refined by the xRage AMR. It is likely that filling in the curve will require something more
sophisticated.

Figure 6 - Polar plot of angular momentum distribution, filled with pointwise representations of the cell momentum contained in
each cell.

Python state file for creating this analysis
state file generated using paraview version 5.9.1

import the simple module from the paraview
from paraview.simple import *
disable automatic camera reset on 'Show'
paraview.simple._DisableFirstRenderCameraReset()

--
setup the data processing pipelines
--

create a new 'PIO Reader'
shapedcharge2dpio = PIOReader(registrationName='shapedcharge2d.pio',
FileName='U:\\Visualization\\pio\\shapedcharge2d.pio')
shapedcharge2dpio.CellArrays = ['cell_energy', 'cell_momentum',
'mass', 'mat', 'vcell']

create a new 'Calculator'
calculator1 = Calculator(registrationName='Calculator1',
Input=shapedcharge2dpio)
calculator1.AttributeType = 'Cell Data'
calculator1.ResultArrayName = 'cell_momentum'
calculator1.Function =
'cell_momentum_X*iHat+cell_momentum_Y*jHat+0*kHat'

create a new 'Merge Blocks'
mergeBlocks1 = MergeBlocks(registrationName='MergeBlocks1',
Input=calculator1)

create a new 'Ghost Cells Generator'
ghostCellsGenerator1 =
GhostCellsGenerator(registrationName='GhostCellsGenerator1',
Input=mergeBlocks1)
ghostCellsGenerator1.MinimumNumberOfGhostLevels = 2

create a new 'Reflect'
reflect1 = Reflect(registrationName='Reflect1',
Input=ghostCellsGenerator1)
reflect1.CopyInput = 0

create a new 'Transform'
transform1 = Transform(registrationName='Transform1', Input=reflect1)
transform1.Transform = 'Transform'

init the 'Transform' selected for 'Transform'
transform1.Transform.Rotate = [0.0, 0.0, -90.0]

create a new 'Calculator'
calculator2 = Calculator(registrationName='Calculator2',
Input=transform1)
calculator2.AttributeType = 'Cell Data'
calculator2.ResultArrayName = 'p_x_mag'

calculator2.Function = 'abs(cell_momentum_X)'

create a new 'Threshold'
threshold1 = Threshold(registrationName='Threshold1',
Input=calculator2)
threshold1.Scalars = ['CELLS', 'p_x_mag']
threshold1.ThresholdRange = [1e-14, 1e+33]

create a new 'Programmable Filter'
programmableFilter1 =
ProgrammableFilter(registrationName='ProgrammableFilter1',
Input=threshold1)
programmableFilter1.Script = """p =
inputs[0].CellData['cell_momentum']

def atan2(y,x):
 sgnx = sign(x)
 sgny = sign(y)
 # This fails when x = 0, b/c arctan(y/x) = NaN, and 0*NaN = NaN.
 # Make sure you've gotten rid of those using Threshold or similar.
 out = sgnx**2*arctan(y/x)+.5*(1-sgnx)*(1+sgny-sgny**2)*pi
 return out

output.CellData.append(atan2(p[:,1], p[:,0]), 'theta')"""
programmableFilter1.RequestInformationScript = ''
programmableFilter1.RequestUpdateExtentScript = ''
programmableFilter1.CopyArrays = 1
programmableFilter1.PythonPath = ''

create a new 'Calculator'
calculator5 = Calculator(registrationName='Calculator5',
Input=programmableFilter1)
calculator5.AttributeType = 'Cell Data'
calculator5.ResultArrayName = 'Polar Angle (deg)'
calculator5.Function = 'theta*180/3.14159'

create a new 'Programmable Filter'
programmableFilter2 =
ProgrammableFilter(registrationName='ProgrammableFilter2',
Input=programmableFilter1)
programmableFilter2.Script = """p =
inputs[0].CellData['cell_momentum']
q = inputs[0].CellData['theta']

compute the magnitude of the momentum:
p = sqrt((p*p).sum(axis=1))
h = pi/32
h2 = h**2
sortargs = argsort(q)
unsortargs = argsort(sortargs)
q = q[sortargs]
p = p[sortargs]
P = 0*p
p_max = 0*p

for ind in range(len(q)):
 q0 = q[ind]
 min_ind, max_ind = searchsorted(q, (q0-h, q0+h))
 x2 = (q[min_ind:max_ind] - q0)**2
 Psi = exp(h2/(x2-h2))
 temp = Psi*p[min_ind:max_ind]
 P[ind] = sum(temp/(h*.443994))
 p_max[ind] = max(temp*2.71828)
output.CellData.append(P[unsortargs], 'integrated_momentum')
output.CellData.append(p_max[unsortargs], 'max_momentum')"""
programmableFilter2.RequestInformationScript = ''
programmableFilter2.RequestUpdateExtentScript = ''
programmableFilter2.CopyArrays = 1
programmableFilter2.PythonPath = ''

create a new 'Calculator'
calculator3 = Calculator(registrationName='Calculator3',
Input=programmableFilter2)
calculator3.AttributeType = 'Cell Data'
calculator3.ResultArrayName = 'scaled_p_coords'
calculator3.Function =
'cell_momentum*integrated_momentum/max_momentum'

create a new 'Cell Data to Point Data'
cellDatatoPointData1 =
CellDatatoPointData(registrationName='CellDatatoPointData1',
Input=calculator3)
cellDatatoPointData1.ProcessAllArrays = 0
cellDatatoPointData1.CellDataArraytoprocess = ['scaled_p_coords']
cellDatatoPointData1.PassCellData = 1

create a new 'Calculator'
calculator4 = Calculator(registrationName='Calculator4',
Input=cellDatatoPointData1)
calculator4.CoordinateResults = 1
calculator4.Function = 'scaled_p_coords'

create a new 'Calculator'
calculator6 = Calculator(registrationName='Calculator6',
Input=calculator4)
calculator6.AttributeType = 'Cell Data'
calculator6.ResultArrayName = 'Velocity (cm/s)'
calculator6.Function = 'cell_momentum/mass'

create a new 'Threshold'
threshold2 = Threshold(registrationName='Threshold2',
Input=calculator2)
threshold2.Scalars = ['CELLS', 'mat']
threshold2.ThresholdRange = [1.5, 10630.557989487197]

create a new 'Extract Time Steps'
extractTimeSteps1 =
ExtractTimeSteps(registrationName='ExtractTimeSteps1',
Input=threshold2)

extractTimeSteps1.TimeStepIndices = [0]
extractTimeSteps1.TimeStepRange = [0, 33]

create a new 'Programmable Filter'
programmableFilter3 =
ProgrammableFilter(registrationName='ProgrammableFilter3',
Input=programmableFilter2)
programmableFilter3.OutputDataSetType = 'vtkPolyData'
programmableFilter3.Script = """P =
inputs[0].CellData['integrated_momentum']
q = inputs[0].CellData['theta']
sortargs = argsort(q)

x = P*cos(q)
y = P*sin(q)
z = 0*P

x, y, z = (coord[sortargs] for coord in (x,y,z))

numPts = len(q)
pdo = self.GetPolyDataOutput()
newPts = vtk.vtkPoints()
for ind in range(0, numPts):
 newPts.InsertPoint(ind, x[ind], y[ind], z[ind])
newPts.InsertPoint(numPts, x[0], y[0], z[0])
pdo.SetPoints(newPts)
aPolyLine = vtk.vtkPolyLine()
aPolyLine.GetPointIds().SetNumberOfIds(numPts+1)
for ind in range(0, numPts+1):
 aPolyLine.GetPointIds().SetId(ind, ind)
pdo.Allocate(1, 1)
pdo.InsertNextCell(aPolyLine.GetCellType(),
aPolyLine.GetPointIds())"""
programmableFilter3.RequestInformationScript = ''
programmableFilter3.RequestUpdateExtentScript = ''
programmableFilter3.PythonPath = ''

create a new 'Tube'
tube1 = Tube(registrationName='Tube1', Input=programmableFilter3)
tube1.Scalars = ['POINTS', '']
tube1.Vectors = ['POINTS', '1']
tube1.Radius = 100000.0

	Introduction
	Overview
	Computing Polar Angle
	Computing Angular Distribution of Momentum

	Computing Maximum Momentum for a Given Polar Angle
	Representing the Angular Distribution as a Curve in Paraview
	Filling in the Angular Distribution
	Further Thoughts and Considerations
	Visual Distortion Due to Spherical Coordinates
	How to Color the Fill Points

	Python state file for creating this analysis

